Heterocyclen als Liganden, X¹⁾

2,2',5,5'-Tetra-*tert*-butyl-1,1'-diazaferrocen – Stabilisierung der Diheterometallocen-Struktur durch sterische Abschirmung

Norbert Kuhn * a, Kai Jendral a, Roland Boese b und Dieter Bläser b

Fachbereich 6 (Chemie) der Universität-Gesamthochschule Duisburg^a, Lotharstr. 1, D-4100 Duisburg 1

Institut für Anorganische Chemie der Universität-Gesamthochschule Essen^b, Universitätsstr. 3-5, D-4300 Essen 1

Eingegangen am 7. Augugst 1990

Key Words: Diazaferrocene derivative / Iron complex

Heterocycles as Ligands, X^{1} . – 2,2',5,5'-Tetra-*tert*-butyl-1,1'-diazaferrocene – Stabilization of the Diheterometallocene Structure by Steric Shielding

Stable 2,2',5,5'-tetra-*tert*-butyl-1,1'-diazaferrocene (3) is obtained by the reaction of the corresponding lithiopyrrole with FeCl₂. The X-ray analysis reveals a distorted sandwich struc-

1,1'-Diazaferrocen (1) und seine Methyl-Derivate waren bislang in freier Form unbekannt und nur durch Koordination an Lewisacide Zentren als Addukt zugänglich²⁾. Im Gegensatz zu Derivaten von Diheterometallocenen der schweren Vb-Elemente (C_4H_4E)₂Fe ($E = P^{3}$, As⁴⁾, Sb⁵⁾ sowie zu (C_5H_5N)₂Cr⁶⁾ führt die Gegenüberstellung der ringständigen Heteroatome in 1 zu einer inakzeptablen Belastung der Sandwich-Struktur⁷⁾.

Anders als in Azaferrocen⁸⁾ (2) ist die Verwendung permethylierter Azacyclopentadienyl-Liganden zur Stabilisierung der Diazaferrocen-Struktur 1 nicht hinreichend⁹⁾. Hingegen verhindert die sterische Abschirmung der Stickstoff-Atome durch die benachbarten *tert*-Butyl-Gruppen in dem durch Umsetzung von FeCl₂ mit lithiiertem 2,5-Di-*tert*-butylpyrrol¹⁰⁾ leicht zugänglichen 2,2',5,5'-Tetra*tert*-butyl-1,1'-diazaferrocen (3) sowohl die η^5 - η^1 -Umlagerung des Azacyclopentadienyl-Liganden in der Koordinationssphäre des Eisens wie auch den nucleophilen Angriff des ringständigen Stickstoff-Atoms auf das Koordinationszentrum eines Nachbarmoleküls¹¹⁾.

Die Kristallstrukturanalyse belegt die Diazaferrocen-Struktur von 3 im festen Zustand (Abb. 1, Tab. 1 und 2). Die Aufsicht zeigt gegenüber der bezüglich der Alkyl-Substituenten günstigen Anordnung der Ringliganden eine deutliche Aufweitung des Torsionswin-

Abb. 1. Zwei Ansichten der Struktur von 3 im Kristall (ohne Wasserstoff-Atome)

ture influenced by repulsive interactions presumably both between the nitrogen atoms and the bulky *tert*-butyl substituents. kels N-pyr_{zentrum} - pyr'_{zentrum} - N' von 72 auf 88.5°; dies entspricht der für Diphosphaferrocen¹²) rechnerisch als Energieminimum ermittelten Anordnung. Angesichts der signifikanten Abweichung röntgenographisch bestimmter Diheterometallocen-Strukturen^{3b,4b}) von dieser Geometrie sowie deutlicher Parallelen zur Struktur von 3 sowohl in der Tieftemperatur-Struktur des Ferrocens selbst¹³) wie auch des Tetra-*tert*-butylferrocens¹⁴ (4) ist die Bedeutung der Bindungsverhältnisse für die Ausbildung der vorliegenden Konformation von 3 jedoch ungewiß. Dies gilt sinngemäß auch für die gegenüber formal verwandten Strukturen²) markante Aufweitung des Abstandes Fe-pyr_{zentrum} auf 168.3 pm sowie für die Verkippung

Tab. 1. Atomkoordinaten $(\times 10^4)$ und äquivalente isotrope atomare Temperaturfaktoren $(\times 10^{-1})$ [pm²]; U_{eq} berechnet als ein Drittel der Spur dcs orthogonalen U_{ij} -Tensors; die Bezifferung erfolgt gemäß Abb. 1

	×	У	z	Ueq
Fe	0	5000	1106(1)	29(1)
N	2146(5)	4407(5)	1360(1)	34(1)
C(1)	1889(6)	5981(6)	1418(2)	34(2)
C(2)	1638(7)	6702(7)	1016(2)	36(2)
C(3)	1785(6)	5534(6)	710(2)	32(2)
C(4)	2101(6)	4146(7)	925(2)	34(2)
C(5)	2137(6)	6758(6)	1839(2)	38(2)
C(6)	3689(7)	7618(8)	1816(2)	63(2)
C(7)	852(8)	7936(7)	1915(2)	60(2)
C(8)	2203(8)	5592(8)	2199(2)	62(2)
C(9)	2583(6)	2602(6)	739(2)	41(2)
C(10)	4318(7)	2731(7)	637(2)	61(2)
C(11)	2375(8)	1283(6)	1058(2)	56(2)
C(12)	1696(8)	2220(8)	334(2)	62(2)

Tab. 2. Bindungsabstände [pm] und ausgewählte Winkel []

Fe-N	208.7	(4)	Fe-C(1)	208.9 (5)
Fe-C(2)	206.3	(6)	Fe-C(3)	203.9 (5)
Fe-C(4)	204.3	(5)	Fe-NA	208.7 (4)
Fe-C(1A)	208.9	(5)	Fe-C(2A)	206.3 (6)
Fe-C(3A)	203.9	(5)	Fe-C(4A)	204.3 (5)
N-C(1)	139.2	(7)	N-C(4)	139.1 (7)
C(1)-C(2)	143.1	(8)	C(1)-C(5)	150,4 (7)
C(2)-C(3)	140.3	(8)	C(3)-C(4)	140.7 (8)
C(4)-C(9)	151.7	(8)	C(5)-C(6)	153.7 (8)
C(5)-C(7)	152.7	(8)	C(5)-C(8)	151.9 (8)
C(9)-C(10)	154.0	(8)	C(9)-C(11)	153.1 (8)
C(9)-C(12)	152.8	(8)		
N-C(1)-C(2)		109.5(5)	C(1)-N-C(4)	106.5(4)
N-C(1)-C(5)		122.1(5)	C(2)-C(1)-C(5)	127.6(5)
C(1)-C(2)-C(3))	106.4(5)	C(2)-C(3)-C(4)	107.4(5)
N-C(4)-C(3)		110.1(5)	C(3)-C(4)-C(9)	128.2(5)
C(1)-C(5)-C(6))	107.5(4)	C(1)-C(5)-C(7)	109.5(4)
C(6)-C(5)-C(7))	108.7(5)	C(1)-C(5)-C(8)	111.6(4)
C(6)-C(5)-C(8)		108.9(5)	C(7)-C(5)-C(8)	110.7(5)
C(4)-C(9)-C(10))	106.6(5)	C(4)-C(9)-C(11)	111.8(4)
C(10)-C(9)-C(1	1)	107.8(5)	C(4)-C(9)-C(12)	112.1(5)
C(10)-C(9)-C(1	2)	109.2(5)	C(11)-C(9)-C(12)	109.3(5)
Pyrzent ^{-Fe-Pyr'} zent		175.5	Pyr _{zent} -C(1)-C(5)	170.8
Pyrzent-C(4)-C	(9)	171.8		

der Ringebenen gegenüber paralleler Anordnung unter Annäherung von C(3) und C(3') um 7.7°; die bezüglich der Wasserstoff-Atom-Lagen rechnerisch optimierte Geometrie von 3 liefert hier Abstände zwischen Wasserstoff-Atomen der an C(1) bzw. C(1') gebundenen *tert*-Butyl-Gruppen im deutlich repulsiven Bereich (<200 pm).

In Lösung zeigt das ¹³C-NMR-Spektrum im Bereich der ringständigen C-Atome für 3 ($\delta = 116.8$ und 66.1) gegenüber 2,5-Ditert-butylpyrrol ($\delta = 139.7$ und 101.5) die für π -Koordination charakteristische Hochfeldverschiebung. Die niedrige Energiebarriere zur Rotation der Ringliganden um die Achse pyr_{zentrum} – Fe führt in Lösung zu einer raschen Racemisierung des im festen Zustand chiralen Diazaferrocens (das Molekül liegt auf einer kristallographischen C₂-Achse), jedoch kann, wie bei 4¹⁵⁾ und anderen sterisch überfrachteten Ferrocenen¹⁶⁾, der dynamische Prozeß durch Abkühlen im Sinne der NMR-Zeitskala hinreichend verlangsamt werden. Über Einzelheiten zur DNMR-Spektroskopie sowie Rechnungen zur Konformationsanalyse wird an anderer Stelle ausführlich berichtet.

Die Existenz des Diazaferrocens 3 zeigt, daß die Abschirmung des Stickstoff-Atoms durch sterisch anspruchsvolle Substituenten in *ortho*-Position die π -Koordination des Azacyclopentadienyl-Liganden wirkungsvoll zu stabilisieren vermag. Dies eröffnet interessante Perspektiven im Bereich der Haupt- und Nebengruppen-Elemente.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gefördert. Wir danken Prof. Dr. P. Sartori für seine freundliche Unterstützung.

Experimenteller Teil

Sämtliche Arbeiten wurden in gereinigten Lösungsmitteln unter Argon durchgeführt. – NMR: Jeol PMX 60 SI (¹H-NMR) und Bruker WM 300 (¹³C-NMR). – MS: Varian MAT 311.

2,2',5,5'-Tetra-tert-butyl-1,1'-diazaferrocen (3): 0.322 g (1.74 mmol) 2,5-Di-tert-butyl-1-lithiopyrrol (hergestellt durch stöchiometrische Umsetzung von 2,5-Di-tert-butylpyrrol¹⁰⁾ und n-Butyllithium in *n*-Hexan) und 0.112 g (0.87 mmol) FeCl₂ werden in 10 ml Toluol suspendiert und tropfenweise mit 1 ml THF versetzt. Nach 1 h bei Raumtemp, wird die Reaktionslösung filtriert. Der nach Entfernen der flüchtigen Bestandteile im Vakuum verbliebene Rückstand wird in 5 ml Toluol aufgenommen und erneut filtriert. Das Filtrat wird zur Trockne eingeengt und aus n-Pentan umkristallisiert; Ausb. 0.200 g (56%) weinrote Kristalle, Schmp. 112°C. -¹H-NMR (60 MHz, [D₆]Benzol, TMS int.): $\delta = 4.20$ (s, 4H, 3-,4-H), 1.38 (s, 36H, CH₃). - ¹³C-NMR (75.43 MHz, [D₆]Benzol, TMS int.): $\delta = 116.8$ (C-2,-5), 66.1 (C-3,-4), 32.0 (quat. C), 31.2 (CH₃). - MS (70 eV): m/z (%) = 412 (100) [M⁺], 397 (38) [M⁺ - CH_{3}], 234 (7) $[M^{+} - C_{12}H_{21}N]$, 219 (58) $[M^{+} - C_{12}H_{21}N - CH_{3}]$ und weitere Bruchstücke.

 $\begin{array}{c} C_{24}H_{40}FeN_2 \ (412.5) \\ Gef. \ C \ 69.87 \ H \ 9.79 \ N \ 6.79 \\ Gef. \ C \ 69.13 \ H \ 9.50 \ N \ 6.26 \end{array}$

Röntgenstrukturanalyse von 3¹⁷⁾: Nicolet-R3m/V-Vierkreisdiffraktometer; Mo- K_{α} -Strahlung, Graphitmonochromator; Kristalldimensionen 0.22 × 0.18 × 0.12 mm; Meßtemperatur 300 K; tetragonal, P42₁c; Zelldimensionen a = b = 865.1(2), c = 3155.0(11)pm; $V = 2.3609(11) \times 10^9$ pm³; Z = 4; $\varrho_{ber.} = 1.160$ g cm⁻³; $\mu = 6.5$ cm⁻¹; ω -Scan-Datensammlung von 1955 unabhängigen Intensitäten (3° $\leq 2\Theta \leq 45^\circ$), davon 1310 [$F_o \geq 4\sigma(F)$] beobachtet. Strukturlösung mit Direkten Methoden und Verfeinerung mit SHELXTL-Plus (1983); 137 Parameter; alle Nichtwasserstoff-Atome anisotrop, alle Methyl-Wasserstoff-Atome isotrop als starre Gruppen (C-H 96 pm, C-C-H bzw. H-C-H 109.5) mit gruppenweise gleichen Temperaturfaktoren verfeinert; R = 0.0416; $R_w = 0.0435$, $w^{-1} = [\sigma^2(F_o) + 0.00181 \cdot F_o^2]$; maximale Restelektronendichte 0.425 × 10⁶ e/pm³, 98 pm von Fe.

CAS Registry-Nummern

3: 129731-19-7 / FeCl₂: 7758-94-3 / 2,5-Di-tert-butylpyrrol: 3760-56-3

- ¹⁾ IX. Mitteilung: N. Kuhn, G. Henkel, J. Kreutzberg, Angew. Chem. **102** (1990) 1179; Angew. Chem. Int. Ed. Engl. **29** (1990) 1143.
- ²⁾ N. Kuhn, E.-M. Horn, R. Boese, N. Augart, Angew. Chem. 100 (1988) 1433; Angew. Chem. Int. Ed. Engl. 27 1368; N. Kuhn, E.-M. Horn, R. Boese, N. Augart, Angew. Chem. 101 (1989) 354; Angew. Chem. Int. Ed. Engl. 28 (1989) 342; N. Kuhn, E.-M. Horn, R. Boese, D. Bläser, Chem. Ber. 122 (1989) 2275.
- R. Boese, D. Bläser, Chem. Ber. 122 (1989) 2275.
 ^{3) 3a)} G. de Lauzon, F. Mathey, M. Simalty, J. Organomet. Chem. 156 (1978) C33. ^{3b)} G. de Lauzon, B. Deschamps, J. Fischer, F. Mathey, A. Mitschler, J. Am. Chem. Soc. 102 (1980) 994. ^{3e)} R. M. G. Roberts, J. Silver, A. S. Wells, Inorg. Chim. Acta 119 (1986) 1.
- (1986) 1. ^(4) 4a) G. Thiollet, F. Mathey, R. Poilblanc, *Inorg. Chim. Acta* 32 (1979) L67. - ^{4b)} L. Chiche, J. Galy, G. Thiollet, F. Mathey, *Acta Crystallogr., Sect. B*, 36 (1980) 1344. - ^{4e)} A. J. Ashe III, S. Mahmoud, C. Elschenbroich, M. Wünsch, *Angew. Chem.* 99 (1987) 249; *Angew. Chem. Int. Ed. Engl.* 26 (1987) 229.
- ³⁾ A. J. Ashe III, T. R. Diephouse, J. Organomet. Chem. **202** (1980) C95.

- ⁶ C. Elschenbroich, J. Koch, J. Kroker, M. Wünsch, W. Massa, G. Baum, G. Stork, *Chem. Ber.* **121** (1988) 1983.
 ⁷ Vgl. hierzu: F. Seel, V. Sperber, *J. Organomet. Chem.* **14** (1968)
- ⁷⁾ Vgl. hierzu: F. Seel, V. Sperber, *J. Organomet. Chem.* **14** (1968) 405.
- ⁸⁾ N. Kuhn, M. Schulten, E. Zauder, N. Augart, R. Boese, *Chem. Ber.* **122** (1989) 1891.
- ⁹⁾ (C₄Me₄N)₂Fe liegt in Lösung dimer mit η¹-koordinierten Pyrrolyl-Liganden vor; das Mößbauer-Spektrum zeigt im festen Zustand ein temperaturabhängiges Gleichgewicht aus drei Komponenten: N. Kuhn, E.-M. Lampe, G. Henkel, E. Althaus, unveröffentlichte Ergebnisse.
- ¹⁰⁾ R. Ramaaseul, A. Rassat, Chem. Commun. 1965, 453.
- ¹¹⁾ Diese Reaktionswege werden für die Zersetzung von Azaferrocen diskutiert; vgl. hierzu: A. Efraty, N. Jubran, A. Goldman, *Inorg. Chem.* 21 (1982) 868.
- ¹²⁾ N. M. Kostic, R. F, Fenske, Organometallics 2 (1983) 1008.
- ¹³⁾ P. Seiler, J. D. Dunitz, Acta Crystallogr., Sect. B, 35 (1979) 1068;
 ibid. 35 (1979) 2020.
- ¹⁴⁾ Z. L. Kaluski, A. I. Gusev, A. E. Kalinin, Y. T. Struchkov, Zh. Strukt. Khim. 13 (1972) 950.
- ¹⁵⁾ W. D. Luke, A. Streitwieser, Jr., J. Am. Chem. Soc. 103 (1981) 3241.
- ¹⁶⁾ H. Sitzmann, J. Organomet. Chem. **354** (1988) 203; J. Okuda, E. Herdtweck, Chem. Ber. **121** (1988) 1899.
- ¹⁷⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsrue, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-320173, der Autorennamen und des Zeitschriftenzitats angefordert werden.

[265/90]